Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Clin Infect Dis ; 77(1): 32-37, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-2327044

ABSTRACT

Mutations accumulated by novel Severe Acute Respiratory Syndrome Coronavirus 2 Omicron sublineages contribute to evasion of previously effective monoclonal antibodies for treatment or prevention of Coronavirus Disease 2019 (COVID-19). Other authorized or approved antiviral drugs such as nirmatrelvir/ritonavir, remdesivir, and molnupiravir are, however, predicted to maintain activity against these sublineages and are key tools to reduce severe COVID-19 outcomes in vulnerable populations. A stepwise approach may be taken to target the appropriate antiviral drug to the appropriate patient, beginning with identifying whether a patient is at high risk for hospitalization or other complications of COVID-19. Among higher risk individuals, patient profile (including factors such as age, organ function, and comedications) and antiviral drug access inform suitable antiviral drug selection. When applied in targeted fashion, these therapies serve as a complement to vital ongoing nonpharmaceutical interventions and vaccination strategies that reduce morbidity and maximize protection against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Outpatients , Antiviral Agents/therapeutic use , Ritonavir/therapeutic use , COVID-19 Drug Treatment
3.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: covidwho-2304760

ABSTRACT

BackgroundThe SARS-CoV-2 Omicron BA.5 subvariant escapes vaccination-induced neutralizing antibodies because of mutations in the spike (S) protein. Solid organ transplant recipients (SOTRs) develop high COVID-19 morbidity and poor Omicron variant recognition after COVID-19 vaccination. T cell responses may provide a second line of defense. Therefore, understanding which vaccine regimens induce robust, conserved T cell responses is critical.MethodsWe evaluated anti-S IgG titers, subvariant pseudo-neutralization, and S-specific CD4+ and CD8+ T cell responses from SOTRs in a national, prospective, observational trial (n = 75). Participants were selected if they received 3 doses of mRNA (homologous boosting) or 2 doses of mRNA followed by Ad26.COV2.S (heterologous boosting).ResultsHomologous boosting with 3 mRNA doses induced the highest anti-S IgG titers. However, antibodies induced by both vaccine regimens demonstrated lower pseudo-neutralization against BA.5 compared with the ancestral strain. In contrast, vaccine-induced S-specific T cells maintained cross-reactivity against BA.5 compared with ancestral recognition. Homologous boosting induced higher frequencies of activated polyfunctional CD4+ T cell responses, with polyfunctional IL-21+ peripheral T follicular helper cells increased in mRNA-1273 compared with BNT162b2. IL-21+ cells correlated with antibody titers. Heterologous boosting with Ad26.COV2.S did not increase CD8+ responses compared to homologous boosting.ConclusionBoosting with the ancestral strain can induce cross-reactive T cell responses against emerging variants in SOTRs, but alternative vaccine strategies are required to induce robust CD8+ T cell responses.FundingBen-Dov Family; NIH National Institute of Allergy and Infectious Diseases (NIAID) K24AI144954, NIAID K08AI156021, NIAID K23AI157893, NIAID U01AI138897, National Institute of Diabetes and Digestive and Kidney Diseases T32DK007713, and National Cancer Institute 1U54CA260492; Johns Hopkins Vice Dean of Research Support for COVID-19 Research in Immunopathogenesis; and Emory COVID-19 research repository.


Subject(s)
COVID-19 , Transplant Recipients , Humans , Ad26COVS1 , BNT162 Vaccine , COVID-19 Vaccines , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Immunoglobulin G
4.
Am J Transplant ; 23(6): 744-758, 2023 06.
Article in English | MEDLINE | ID: covidwho-2286568

ABSTRACT

Kidney transplant recipients (KTRs) show poorer response to SARS-CoV-2 mRNA vaccination, yet response patterns and mechanistic drivers following third doses are ill-defined. We administered third monovalent mRNA vaccines to n = 81 KTRs with negative or low-titer anti-receptor binding domain (RBD) antibody (n = 39 anti-RBDNEG; n = 42 anti-RBDLO), compared with healthy controls (HCs, n = 19), measuring anti-RBD, Omicron neutralization, spike-specific CD8+%, and SARS-CoV-2-reactive T cell receptor (TCR) repertoires. By day 30, 44% anti-RBDNEG remained seronegative; 5% KTRs developed BA.5 neutralization (vs 68% HCs, P < .001). Day 30 spike-specific CD8+% was negative in 91% KTRs (vs 20% HCs; P = .07), without correlation to anti-RBD (rs = 0.17). Day 30 SARS-CoV-2-reactive TCR repertoires were detected in 52% KTRs vs 74% HCs (P = .11). Spike-specific CD4+ TCR expansion was similar between KTRs and HCs, yet KTR CD8+ TCR depth was 7.6-fold lower (P = .001). Global negative response was seen in 7% KTRs, associated with high-dose MMF (P = .037); 44% showed global positive response. Of the KTRs, 16% experienced breakthrough infections, with 2 hospitalizations; prebreakthrough variant neutralization was poor. Absent neutralizing and CD8+ responses in KTRs indicate vulnerability to COVID-19 despite 3-dose mRNA vaccination. Lack of neutralization despite CD4+ expansion suggests B cell dysfunction and/or ineffective T cell help. Development of more effective KTR vaccine strategies is critical. (NCT04969263).


Subject(s)
COVID-19 , Kidney Transplantation , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , RNA, Messenger/genetics , Transplant Recipients , mRNA Vaccines , Receptors, Antigen, T-Cell , Antibodies, Viral
7.
Clin Infect Dis ; 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2231656

ABSTRACT

Antibody responses to SARS-CoV-2 vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of pre-existing antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in this immunosuppressed population.

8.
Am J Transplant ; 23(3): 423-428, 2023 03.
Article in English | MEDLINE | ID: covidwho-2176080

ABSTRACT

Neutralizing antibody (nAb) responses are attenuated in solid organ transplant recipients (SOTRs) despite severe acute respiratory syndrome-coronavirus-2 vaccination. Preexposure prophylaxis (PrEP) with the antibody combination tixagevimab and cilgavimab (T+C) might augment immunoprotection, yet in vitro activity and durability against Omicron sublineages BA.4/5 in fully vaccinated SOTRs have not been delineated. Vaccinated SOTRs, who received 300 + 300 mg T+C (ie, full dose), within a prospective observational cohort submitted pre and postinjection samples between January 31, 2022, and July 6, 2022. The peak live virus nAb was measured against Omicron sublineages (BA.1, BA.2, BA.2.12.1, and BA.4), and surrogate neutralization (percent inhibition of angiotensin-converting enzyme 2 receptor binding to full length spike, validated vs live virus) was measured out to 3 months against sublineages, including BA.4/5. With live virus testing, the proportion of SOTRs with any nAb increased against BA.2 (47%-100%; P < .01), BA.2.12.1 (27%-80%; P < .01), and BA.4 (27%-93%; P < .01), but not against BA.1 (40%-33%; P = .6). The proportion of SOTRs with surrogate neutralizing inhibition against BA.5, however, fell to 15% by 3 months. Two participants developed mild severe acute respiratory syndrome-coronavirus-2 infection during follow-up. The majority of fully vaccinated SOTRs receiving T+C PrEP achieved BA.4/5 neutralization, yet nAb activity commonly waned by 3 months postinjection. It is critical to assess the optimal dose and interval of T+C PrEP to maximize protection in a changing variant climate.


Subject(s)
COVID-19 , Transplant Recipients , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral
9.
Clin Transplant ; 37(4): e14913, 2023 04.
Article in English | MEDLINE | ID: covidwho-2192504

ABSTRACT

BACKGROUND: Tixagevimab and Cilgavimab (T + C) is authorized for pre-exposure prophylaxis (PrEP) against Coronavirus Disease 2019 (COVID-19) in solid organ transplant recipients (SOTRs), yet patient-reported outcomes after injection are not well described. Furthermore, changes in risk tolerance after T + C PrEP have not been reported, of interest given uncertain activity against emerging Omicron sublineages. METHODS: Within a national prospective observational study, SOTRs who reported receiving T + C were surveyed for 3 months to ascertain: (1) local and systemic reactogenicity, (2) severe adverse events with focus on cardiovascular and alloimmune complications, and (3) breakthrough COVID-19, contextualized through (4) changes in attitudes regarding COVID-19 risk and behaviors. RESULTS: At 7 days postinjection, the most common reactions were mild fatigue (29%), headache (20%), and pain at injection sites (18%). Severe adverse events were uncommon; over 3 months of follow-up, 4/392 (1%) reported acute rejection and one (.3%) reported a myocardial infarction. Breakthrough COVID-19 occurred in 9%, 16-129 days after receiving full dose (300/300 mg) T + C, including two non-ICU hospitalizations. Most surveyed SOTRs (65%) felt T + C PrEP was likely to reduce their COVID-19 risk, and 70% reported increased willingness to engage in social activities such as visiting friends. However, few felt safe to return to in-person work (20%) or cease public mask-wearing (15%). CONCLUSIONS: In this prospective study of patient-reported outcomes, T + C was well tolerated with few serious events. Several COVID-19 breakthroughs were reported, notable as most SOTRs reported changes in risk tolerance after T + C. These results aid counseling of SOTRs regarding real-world safety and effectiveness of T + C.


Subject(s)
COVID-19 , Organ Transplantation , Pre-Exposure Prophylaxis , Humans , Prospective Studies , Transplant Recipients
10.
Transplant Direct ; 8(1): e1268, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2191240

ABSTRACT

BACKGROUND: Few reports have focused on newer coronavirus disease 2019 (COVID-19) therapies (remdesivir, dexamethasone, and convalescent plasma) in solid organ transplant recipients; concerns had been raised regarding possible adverse impact on allograft function or secondary infections. METHODS: We studied 77 solid organ transplant inpatients with COVID-19 during 2 therapeutic eras (Era 1: March-May 2020, 21 patients; and Era 2: June-November 2020, 56 patients) and 52 solid organ transplant outpatients. RESULTS: In Era 1, no patients received remdesivir or dexamethasone, and 4 of 21 (19.4%) received convalescent plasma, whereas in Era 2, remdesivir (24/56, 42.9%), dexamethasone (24/56, 42.9%), and convalescent plasma (40/56, 71.4%) were commonly used. Mortality was low across both eras, 4 of 77 (5.6%), and rejection occurred in only 2 of 77 (2.8%) inpatients; infections were similar in hypoxemic patients with or without dexamethasone. Preexisting graft dysfunction was associated with greater need for hospitalization, higher severity score, and lower survival. Acute kidney injury was present in 37.3% of inpatients; renal function improved more rapidly in patients who received remdesivir and convalescent plasma. Post-COVID-19 renal and liver function were comparable between eras, out to 90 d. CONCLUSIONS: Newer COVID-19 therapies did not appear to have a deleterious effect on allograft function, and infectious complications were comparable.

14.
Am J Transplant ; 22(12): 3137-3142, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1973539

ABSTRACT

A recent study concluded that SARS-CoV-2 mRNA vaccine responses were improved among transplant patients taking mTOR inhibitors (mTORi). This could have profound implications for vaccine strategies in transplant patients; however, limitations in the study design raise concerns about the conclusions. To address this issue more robustly, in a large cohort with appropriate adjustment for confounders, we conducted various regression- and machine learning-based analyses to compare antibody responses by immunosuppressive agents in a national cohort (n = 1037). MMF was associated with significantly lower odds of positive antibody response (aOR = 0.09 0.130.18 ). Consistent with the recent mTORi study, the odds tended to be higher with mTORi (aOR = 1.00 1.452.13 ); however, importantly, this seemingly protective tendency disappeared (aOR = 0.47 0.731.12 ) after adjusting for MMF. We repeated this comparison by combinations of immunosuppression agents. Compared to MMF + tacrolimus, MMF-free regimens were associated with higher odds of positive antibody response (aOR = 2.39 4.267.92 for mTORi+tacrolimus; 2.34 5.5415.32 for mTORi-only; and 6.78 10.2515.93 for tacrolimus-only), whereas MMF-including regimens were not, regardless of mTORi use (aOR = 0.81 1.542.98 for MMF + mTORi; and 0.81 1.512.87 for MMF-only). We repeated these analyses in an independent cohort (n = 512) and found similar results. Our study demonstrates that the recently reported findings were confounded by MMF, and that mTORi is not independently associated with improved vaccine responses.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , Tacrolimus , Mycophenolic Acid/therapeutic use , Antibody Formation , MTOR Inhibitors , COVID-19 Vaccines , SARS-CoV-2 , Graft Rejection/prevention & control , COVID-19/prevention & control , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Transplant Recipients , TOR Serine-Threonine Kinases
15.
Transplantation ; 106(10): e452-e460, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1948635

ABSTRACT

BACKGROUND: Solid organ transplant recipients (SOTRs) are less likely to mount an antibody response to SARS-CoV-2 mRNA vaccines. Understanding risk factors for impaired vaccine response can guide strategies for antibody testing and additional vaccine dose recommendations. METHODS: Using a nationwide observational cohort of 1031 SOTRs, we created a machine learning model to explore, identify, rank, and quantify the association of 19 clinical factors with antibody responses to 2 doses of SARS-CoV-2 mRNA vaccines. External validation of the model was performed using a cohort of 512 SOTRs at Houston Methodist Hospital. RESULTS: Mycophenolate mofetil use, a shorter time since transplant, and older age were the strongest predictors of a negative antibody response, collectively contributing to 76% of the model's prediction performance. Other clinical factors, including transplanted organ, vaccine type (mRNA-1273 versus BNT162b2), sex, race, and other immunosuppressants, showed comparatively weaker associations with an antibody response. This model showed moderate prediction performance, with an area under the receiver operating characteristic curve of 0.79 in our cohort and 0.67 in the external validation cohort. An online calculator based on our prediction model is available at http://transplantmodels.com/covidvaccine/ . CONCLUSIONS: Our machine learning model helps understand which transplant patients need closer follow-up and additional doses of vaccine to achieve protective immunity. The online calculator based on this model can be incorporated into transplant providers' practice to facilitate patient-centric, precision risk stratification and inform vaccination strategies among SOTRs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Transplant Recipients , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Machine Learning , Mycophenolic Acid , SARS-CoV-2 , Vaccines , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL